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Abstract

The main objective of this commentary was to highlight some of the common mistakes

and misuse of statistics in biological experimental designs, as well as possible ways of

addressing these misconceptions. More often than not, researchers seek for guidance

on their data analysis after data collection is completed, upon which the Biostatisticians

detect poorly conceived experimental designs. Poorly conceived research often results

in data analysis and/or results which do not correspond with experimental designs. The

advent of ready to use statistical software seems to have both positive and negative

benefits to agricultural research. Although it enables efficient data manipulation,

processing and analysis, researchers with limited statistical experience are more likely

to misuse statistical procedures, and this might lead to erroneous decisions. The validity,

reliability and usability of biological research findings is dependent on adherence to

statistical protocols and codes of conduct in the designing of experiments, analysis and

interpretation of data as well as the conclusions made from the results. Therefore,

researchers with limited statistical knowledge are encouraged to seek guidance from

Biostatisticians right from the conception stage of their experiments. Researchers need

to use relevant statistical analysis and interpretation protocols for their research results

to be scientifically valid and usable.
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Introduction

During the course of our careers, as biostatisticians in an academic institution, we

have observed with dismay investigators, colleagues, undergraduates and

postgraduates struggle to analyse their research data with poor appreciation of the

statistical rigor required to make valid inferences. We have also encountered numerous

proceedings and papers where the statistical inferences and conclusions are

questionable given the methodologies and experimental protocols, for example, lack

of adherence to the basics of randomization, blocking, inadequate replication and

inappropriate statistical analysis approaches. We wish to share these with the readers

in this commentary, with the hope that highlighting some of the common flaws we

have encountered, will reduce their occurrence and improve the quality of research

and make better use of available resources invested to improve our understanding of

biological phenomena.

The validity of results from an experiment requires adherence to scientific protocols

and codes of conduct. Therefore, it is of ultimate importance that scientists pay

attention to the protocols and codes of conduct from problem formulation, setting up

of hypotheses, experimental design, data collection and analysis up until the stage of

results interpretation. Scientists often apply analysis methods that are not in

concordance with the type of data collected as well as the design used for the study.

Oftentimes, this may result in scientists making errors when interpreting their research

findings, compromising the inference from the results.  Researchers often fail to seek

assistance at the conception phase of their research experiments, often resulting in

common mistakes such as collection of inadequate data due to improper designs.

Problematic experiments may hinge from inadequate replication, failure to block or

consider clustered populations, and the oftentimes application of wrong experimental

designs. Different study designs have strengths and weaknesses (Grabowski, 2016a).

The selected design should be the most appropriate to address the study objectives

and study materials or resources (Mbotwa et al., 2017).

Over the years, the ready availability of easy-to-use and free open source statistical

software has resulted in researchers with limited statistical background increasingly

misusing or failing to use statistical procedures accurately. Currently, scientists tend

to adopt any statistical method that produces a p-value, which can be used to draw

conclusion on the hypothesis being tested with little thought for compatibility between

the study objectives, research design, types of data collected and data analysis.

Therefore, understanding the consequences of using an analysis method that is not at

par with the study design and the type of data collected; and how they can be avoided

is of great importance to the scientific community. This commentary is aimed at
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highlighting some of the common mistakes and consequences of oversights in the

design, and analysis of data in scientific experiments including the lack of use and/or

misuse of proper statistical procedures, and offers guidelines on how to avoid them.

Common mistakes in experimental design

Poor planning at the conceptual stage of the experiment

The reliability and validity of scientific findings require a rigorous process from the

beginning of the study or experimental design. This may include the definition, number

and selection of experimental units, setting up hypotheses, data collection, data analysis

methods and interpretation of results. Investigators tend to use inappropriate

experimental designs due to lack of insight on efficient designs to accomplish study

objectives. Quite often, researchers with limited statistical knowledge bring their data

to statisticians for assistance with data analysis, only after the experiment or data

collection has been completed. Since some of these researchers have limited

knowledge of the statistical design that was applied, they expect the statistician to

help them decide and understand the experimental layout and deduce the best statistical

analysis procedure from the data. The researchers may also have limited understanding

of the hypotheses they are testing, which may invalidate the statistical tests (Zar,

2010), because hypotheses should be stated before collecting the data to avoid

subjectivity.

Poor statistical consideration at the conception stage of the experiment seems to be

the biggest and most common mistake that scientists have to be aware of so that they

avoid reporting and interpreting wrong findings or invalid conclusions.  Proper planning

enables one to identify the possible sources of variation or confounding effects in the

proposed study and choose designs that are more efficient for an enhanced quality of

the data to collect. If one has limited statistical and experimental design knowledge,

it is important that they engage relevant expertise at the conception stage of the

experiment or study. Experimental consideration of issues such as the design structure

and treatment structure to be used, the number of replicates as well as random allocation

of experimental units to treatments, should be clearly determined at the onset of the

experiment for quality data collection (Montgomery, 2017). The design structure

refers to the grouping of experimental units into homogeneous groups where necessary

and examples are the completely randomized design (CRD) and randomized complete

block design (RCBD); while the treatment structure refers to the set of treatment

combinations that the investigator intends to study and examples are one-way

treatment structure or factorial treatment structure.
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Select statistical textbooks (e.g. Hays, 1994; Quinn and Keough, 2002; Gelman,

2012) provide user-friendly guidelines for designing experiments and should be

consulted prior to having a meaningful discussion with a statistician on the choice of

appropriate designs, especially for those with limited training in Statistics. Failure to

identify and account for all the possible sources of variation may result in the use of

an inappropriate experimental design and this might in turn result in use of wrong

statistical models, which could result in erroneous inferences and invalid conclusions.

Inadequate replication

In any experimental design, the number of replicates is a critical decision as it directly

affects the validity and reliability of conclusions to be made from the study findings.

In designed experiments, replication allows accurate estimation of the experimental

error (to reduce and quantify uncertainty) (NSDU, 2023). Through increased

replication,  an increasingly more precise estimate of the treatment means can be

obtained. Replication improves the sensitivity of statistical tests for comparing means.

Common mistakes or oversights in scientific studies include incorrect sample-size

estimation methods, which might result in under-replication or over-replication.

Determination of the number of replicates required for a study depends on the study

design, the minimum size of difference that is desired for detection, the variance, the

power of a test or certainty with which the difference is detected, the level of significance

and the type of statistical test being performed (Santhoshkumar, 2016; Sharifi, 2017).

Under-replication could result in imprecise estimates and lack of statistical power. In

addition, a small sample will be unethical as it might put subjects or participants to

inferior treatments when results will not be generalizable in the end (Mbotwa et al.,

2017). On the other hand, over-replication will be a waste of resources and unethical

if animal, plant or human subjects are at risk of exposure to weak treatments. As a

result, it is imperative that proper replication size determination procedures are utilized

in scientific studies. Experiments have been observed to be more on the under-

replication side than over-replication (Nelson and Rawlings, 1983), possibly due to

time or resource constraints. For example, it is quite common to see a research

experiment with only two replicates, which will be inadequate.

Different computations have been proposed and can be applied to determine adequate

replication. Kaps and Lamberson (2004), and Montgomery (2017) provide useful

guides to the determination of the proper number of replicates. However, some

scholars propose that a level of replication that gives an error degrees of freedom

(df) of at least 12 is usually considered desirable (EPPO Bulletin, 2012;

Santhoshkumar, 2016; Sharifi, 2017) as  error df below 12 leads to rapid increase in

the critical F values, resulting in decrease in the statistical power of the F-test, thus
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making it difficult to detect true differences. Some scholars argue that the number of

replications should provide at least 10  to 15 degrees of freedom for computing the

experimental error variances (Jayaraman, 2000; Mullan, 2021). The more the df for

the error, the more powerful the statistical test based on the F-ratios from the analysis

of variance (ANOVA). Computer software and online calculators are also  readily

available via search engines to assist in determining the adequate replication for

experiments.

Inadequate randomization procedures

Another common mistake in biological research is inadequate randomization in

experimental designs. Randomisation in scientific studies removes bias in selection of

experimental units and allocation of experimental subjects to treatments; balances

the groups with respect to many known and unknown confounding variables, and

forms the basis of statistical tests (Suresh, 2011) as it allows the error terms to be

independent. Experimental units in one group should not differ in any systematic way

from experimental units in another group, as this will bias research results, leading to

erroneous inference after data analysis. For example, if older animals are allocated

to one treatment, the outcome of the experiment may be influenced by this imbalance.

Failure to use proper randomisation procedures could cause certain treatments to be

favoured or hampered due to their position in the experimental layout, leading to

differences in the precision for different comparisons (Nelson and Rawlings, 1983)

and overestimation treatment effects by up to 40% compared to properly randomized

trials (Schulz and Grimes, 2002). Although Generalized Linear Models (GLM) are

sometimes adjusted for covariance imbalance at the analysis stage, the interpretation

of results with the adjusted covariance structure might be difficult as this might result

in unanticipated interaction effects (Suresh, 2011). Randomisation might be considered

at the stage of assigning treatments to experimental units but thereafter, spurious

correlation might be introduced at a later stage of the experiment. For example, in a

feeding trial, individual animals might be allocated to experimental units at random,

but if animals under one treatment (say diet) are to be housed in one pen, spurious

correlation might be introduced if the individual animal is considered the experimental

unit, and not the pen or cage. Furthermore, there are studies in which the experiment

is a chain of individual steps, which are stand-alone trials. For example, hydroponic

fodder might be grown according to an experimental design in a greenhouse and then

a second stage is included where the fodder is allocated to different ensiling methods

using another experimental design. A good design would incorporate provisions for

error control at both stages of the experiment. However, for easier analysis, if the

main objective is to compare ensiling methods, then the fodder can be grown under

uniform conditions.
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Blocking

The precision of the data from an experiment depends to a large extent on the

experimental technique used to collect the data and the ability to factor in all possible

sources of variation including confounding variables. If one knows beforehand that

there are some nuisance factors that might affect the results, either due to experimental

units or environmental conditions that are not homogeneous, one should try to design

the experiment in such a way that the disturbance from the nuisance factors is minimized.

Blocking is where by the experimental units are first grouped into similar units, or

sets, by making use of prior information about the experimental units, such that

homogeneous experimental units are categorized together, to reduce the contribution

of the nuisance factors to the experimental error.

Under uniform treatment, the variability in the responses among experimental units in

one block will be less than the variation among the blocks, making conclusions more

precise as separate conclusions can be made for each block. However, agricultural

studies are sometimes poorly blocked, either by omission or commission. Nelson

and Rawlings (1983) noted that many “agronomists” do not recognise the value of

effective blocking and they block to provide replication and not to control the

experimental error. Researchers should try to use uniform experimental subjects/

units if they are available and use appropriate blocking procedures if homogeneous

experimental units are not at their disposal.

Inappropriate analysis methods

It is a very common and unfortunate practice to inappropriately use readily available

statistical software, get  p-values and conclude, regardless of whether the statistical

analysis method is appropriate or not (Grabowski, 2016b). It is also not uncommon

in biological research to use inappropriate data analysis methods and err in drawing

conclusions even if the experiment was properly designed. In this regard, Mukaka

and Moulton (2016) emphasized the need for consistency between experimental

designs and analysis methods and discussed how contradictory conclusions can be

arrived at depending on a chosen analysis methods. Discrepancies often lead to

erroneous conclusions which may not just be unacceptable to the scientific community,

but may put animal, plant and human subjects at risk if decisions are to be based on

such findings, and thus are unethical.

Mis-specification of the model

(i) Ignoring random effects due to repeated measures designs

At times, biological researchers are compelled to employ repeated measures designs

which involve multiple measurements taken on each subject at different time points.
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Repeated measurements are often considered when fewer experimental units are

available for experimentation, when the researcher wants to increase the efficiency

and sensitivity of the experiment and when the researcher wants to observe changes

in experimental subjects over time (Shaughnessy et al., 2015). There are different

types of repeated measures designs. Firstly, each experimental unit is subjected to

one treatment and measurements are recorded multiple times. For example, a feeding

trial where the experimental subjects are given one type of feed over time and the

weights are recorded repeatedly during the feeding trial. Secondly, repeated measures

might be in the form of cross-over Latin Square designs where the experimental

subjects are exposed to all the treatment conditions at different time points. In the

second design, each subject functions as an experimental block. These are very

common in animal experimentation when the numbers of animals are limited. Each

animal receives all treatments at different time periods with a short time interval for

adaptation and to ensure the effects of the previous treatment do not affect the current

treatment. The second type has an advantage that fewer subjects are required for

experimentation and thus cheaper. However, at times there are challenges encountered

in analyzing such type of data.

The appropriate statistical approach to analyzing repeated measures data includes

the paired-sample t-tests, general linear mixed models or the repeated measures.

The linear mixed effects control for correlated errors emanating from data that were

collected from the same experimental units at different time points, which might result

in muddled statistical inference if not accounted for. However, common practices for

analyzing such biological data sometimes ignore these random effects and is probably

the biggest issue in inference in experimental biology (Walker, 2020). Other challenges

in analyzing such type of data include considering treatments as repeated measures

even if the units were subjected to the same treatments over time. In addition,

significant effects for the repeated measures does not mean the treatments are

significantly different. Littell et al. (1998) have elaborated on the appropriate statistical

procedures for analyzing data from repeated measures designs.

(ii)  Ignoring random effects due to sub-sampling

Biological observations are usually taken from the experimental units themselves.

However, sometimes it might be impossible to measure the entire experimental unit

(Kaps and Lamberson, 2004) or more observations are desired or convenient. This

sometimes leads to researchers sampling from the experimental units, resulting in a

phenomenon termed sub-sampling. Erroneous inference may be arrived at if

researchers utilize ordinary ANOVA models with a single error term for analysis, as

these assume that the subsamples within a given experimental unit are independent.

The appropriate ANOVA model should have a sampling error in addition to the
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usual experimental error (MSE) to control for correlations among measurements

sub-sampled from the same experimental unit. In the case of a completely randomized

design with sub-sampling, the appropriate statistical model for analysis will be:

Where: i = 1... t, j =1... n, k = 1 ... m

µ is the overall mean,  τ
ι
 is the fixed treatment effect, ε

ij
 is the random experimental

error for the jth experimental unit and  δ
ijk 

 the random effect for the kth  sub-sample of

the jth experimental unit of the ith treatment. The  ε
ij 
and  δ

ijk
 are independent random

effects that are normally distributed with mean 0 and variances          and        ,

respectively.

For example, in a study to evaluate the effect of substitution of soybean with four

levels of dietary Spirulina platensis (T1 - 0%, T2 - 5%, T3 - 10% and T4 - 15%)

to grower diets on the internal organ sizes of chickens, an investigator may place

multiple birds per cage and have six replicates per treatment; hence the cage is the

experimental unit. In order to compare the internal organs, if chickens are randomly

sampled in each cage for slaughter, then that constitutes sub-sampling and the individual

chickens are not replicates but rather subsamples (pseudo replicates). The total

variability should be disaggregated in the treatment variability, random error and

sampling error such that the one-way ANOVA is as shown in Table 1.

Similar problems are encountered where laboratory samples are done in duplicates

or triplicates where more than one laboratory test is performed from the same sample

and the results taken as replicates instead of being averaged out. Analysing subsamples

as if they were replicates creates false degrees of freedom (df) and may lead to

erroneous inferences.
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Table 1.  ANOVA Table  with sub-sampling
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Misinterpretation of p-values

The p-value indicates the strength of evidence against the null hypothesis. Investigators

sometimes may have inadequate replication of experiments or the size of the difference

between means to be detected for a given sample size may be small, or the variance

of the sampled population may be large, or indeed there is limited evidence for rejection

of the null hypothesis, with the consequence that p-values may not reach the preset

significance level (usually α = .05) and would be reported as trends (0.05 < P < 0.1)

(Kim and Bang, 2016; Benjamin et al., 2018; Resnick, 2019). We contend that

with proper prior planning of an experiment under guidance of a statistician to ensure

adequate replication, sample size and uniformity of experimental units, the ambiguity

of reporting p-values can be avoided, so that either the results are reported as

significant (P < 0.05) or not significant (P > 0.05). Furthermore, researchers should

bear in mind that statistical significance does not equate to biological significance

(Quinn and Keough, 2002).

Wrong interpretations of results in the presence of significant interactions

Interaction effects refers to the combined effects of two or more factors on the

dependent variable and occur when the effects of one factor are dependent on the

levels of the other factor. Interaction effects are common in regression analysis and

ANOVA. Interaction effects can be detected by plotting an interaction graph, for

example, when the factor levels on the “x”-axis are quantitative, in a line graph

displaying fitted values on the “y”-axis; Factor A is on the x-axis while various lines

show Factor B (or vice versa). Parallel lines indicate the absence of interaction effects

while deviation from parallelism suggests the presence of interaction effects.

Researchers should perform statistical hypothesis testing to detect interaction, as

non-parallel lines can be an indication of random sampling error (Stevens, 1999) and

hypothesis testing separates real effects from random noise. For example, in a study

to evaluate the effect of substitution of soybean with different levels of dietary Spirulina

platensis grower diets on the nutrient composition of two indigenous chicken breeds

(P- Koekoek and Boschveld).  If the factor level combinations of breed and Spirulina

platensis levels have been replicated, then it is possible to include an interaction term

in the model and analyze for its significance, that is if the effects of levels of Spirulina

platensis depend on breed. The results are in Figure 1. In Figure 1(a), the lines for

Boschveld and P- Koekoek appear parallel, suggesting the absence of interaction

effects on ash content while in Fig. 1(b) there are suggestions that there might be

significant breed and Spirulina platensis levels interaction on the fecal neutral

detergent fibre (NDF) as the lines intersect. To complement these results, the interaction

p-values for ash and NDF were 0.65 and 0.003, respectively (with 0.09 and 0.55

Cohen effect sizes, respectively) (Cohen, 2013).
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Figure 1(a).  Effects of breed and Spirulina levels on ash content.

Figure 1(b).  Effects of breed and Spirulina levels on NDF content.
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Interpretation of results in the presence of interaction effects seems to be a challenge

in many agricultural studies. If interaction effects are not significant, they may be

dropped from the model and interpretation of results should dwell on main effects

only. If interaction effects are significant, it means comparison for main effects become

meaningless and only interaction means are worthy of comparison. When interpreting

interaction means, it should be clearly stated how one level of a factor behaves

differently with the other levels of the other factor. However, those who compare

factor level combination means may be silent about this.

Failure to perform model diagnostics checks before using the statistical model

for inference

Most statistical procedures for analysis make assumptions on the type of data, the

scale of measurement and the underlying distribution. These assumptions on the data

determine whether we can use parametric or non-parametric procedures. One

common mistake is the application of statistical methods to wrong type of data

measurement scales, failure to perform relevant data transformations, and failure to

use appropriate non-parametric methods when one should. The validity of most

statistical models is based on meeting the underlying model assumptions. The

assumptions in the analysis of experimental data using parametric methods include:

(1) the relationship between variables should be additive (ANOVA) or linear; (2)

data in each comparison group should show a normal or Gaussian distribution; (3)

data should exhibit homogeneous variances; (4) observations should be independent;

and (5) independent variables should be independent in multiple linear regression

(MLR), a violation of which is coined multi-collinearity (Montgomery, 2017; Zar,

2010).  If model assumptions are not met, the validity of results can be compromised.

It is thus a good and expected practice for researchers to perform model diagnostics

checks to verify if the underlying assumptions have been met before using the model

for inference and decision making. However, it is a common practice in biological

research to apply ordinary data analysis methods and go ahead and make inference

without carefully studying the patterns of variation in the data or check if the underlying

assumptions have been met and perform necessary adjustments or transformations.

R-squared values, model adequacy p-values, the Akaike information criteria (AIC:

Akaike, 1974) and the Bayesian Information Criteria (BIC: Schwarz, 1978), the

Deviance Information Criteria (DIC: Spiegelhalter et al., 2002), the Widely Applicable

Information Criteria (WAIC: Watanabe and Opper, 2010) for Bayesian estimation

and the log-likelihood ratios can be utilized to test the overall model adequacy.

Graphical plots can be used to visually explore data to check if model assumptions

have been met. In regression analysis, scatter plots can be used to explore the pattern

of relationship that exist between the variables before selecting the best analytical

method (linear, logarithmic, exponential, polynomial, sigmoid, no relationship) or data
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transformation (square root, reciprocal, logarithmic) that can make the relationship

linear. In addition, scatter plots can check highly correlated independent variables in

MLR.

Box and whisker plots can be used to examine symmetry and the amount of variance

in the data as well as identifying outliers. If the data is highly skewed, then median

and interquartile range maybe the best measures of central tendency and dispersion

respectively, instead of the mean and standard deviation which are appropriate for

symmetric data. Quantile-quantile (QQ) plots of predicted against observed and

histogram of residuals can also be used and formal tests such as the Shapiro-Wilkis’

test can be used to test for the assumption of normality.

To ensure independence, experimental units should be randomly selected and

randomly allocated to experimental treatments. The graphical plot of residuals versus

time or observation order and the Durbin-Watson tests can be used to test the

independence assumption. The homogeneity of variance assumption can be

ascertained by graphically plotting residuals versus predicted values. If there is no

obvious pattern, then the variances are stable. Formal tests such as the Levene’s

test, the Bartlett’s test can be employed.

In MLR models, multi-collinearity can be detected through bivariate correlations of

explanatory variables that are at least 0.7, very high standard errors for regression

coefficients, overall model significance with all model parameters non-significant,

large changes in parameter estimates upon variable removal or addition, coefficients

with signs that contradict theory, coefficients that differ with wide margins for different

samples and high variance inflation. When detected, multi-collinearity can be rectified

by removing some of the independent variables that are highly correlated. Alternatively,

linearly combine variables that are highly correlated to form new variables that are

fewer and not correlated using statistical data reduction procedures such as principal

components analysis and factor analysis. Ridge regression and partial least squares

regression can also handle multi-collinear variables.

Generally, if the model assumptions have not been met, alternatives include: (1)

transformations of the response variable to either make it normal or to make variances

homogeneous or to remove or reduce non-additive interactions (Falconer, 1989);

(2) if transformations do not work, use non-parametric statistical methods such as

the Median test and the Mann-Whitney-Wilcoxon test for two independent samples;

the Wilcoxon paired ranks test for two matched samples; the Kruskall-Wallis for 

independent samples and the Friedman test for  dependent samples. Log

transformations can be used when treatment effects are multiplicative rather than
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additive and when there is a proportional relationship between the mean and the

standard deviation. The coefficient of variation (CV) gives an indication of the degree

of departure from normality and a useful guide is to transform variables when the CV

exceeds 20% (Falconer, 1989). The square root transformation is useful when

variances are proportional to sample means and to normalize the Poisson distribution.

The arcsine transformation is used for square root of proportions which are the basis

of the binomial distribution. The reciprocal transformation is used for data showing a

sigmoid curve (e.g. growth curves). The transformation is used when the standard

deviations of treatments are proportional to the square of means.

Conclusion

Correct experiment design relies on the basic principles in statistics of replication,

randomization and blocking and these should be borne in mind for any experimental

study. However, even for correctly designed and collected data, invalid statistical

analysis procedures can lead to erroneous inferences. The advent of readily available

statistical software has led to many researchers with limited statistical background

wrongly applying some statistical methodologies for analysis as long as they get a p-

value to use for inference. Though not fully exhaustive, the commentary  gives an

overview of some of the common pitfalls noted in analysis of data arising from biological

research and provides guidelines on the correct procedures to be followed to improve

on the quality of statistical analyses and hence inferences. The failure of researchers

to properly design research experiments, match the study design, data type and

research objectives with the appropriate data analysis method is caused inter alia

by inadequate training on statistical methods and experimental designs. Furthermore,

negligence and lack of coordination between co-investigators, or failure to include

co-investigators with statistical knowledge in research teams as well as looking for

assistance on data analysis when the experiment is done and data has already been

collected. Thus, researchers with limited statistical background are advised to seek

advice from statisticians at the conception phase, as it is difficult to remedy poorly

designed research. In addition, researchers are advised to adequately replicate and

randomize their experiments, and use statistical analysis procedures that best suit

their designs and data types.  Although the p-value is a useful statistical tool in

hypothesis testing, researchers are advised to complement their findings with estimation

of effect sizes for their results to be more conclusive.  It is important to perform

model diagnostic checks to check if model assumptions have been met before using

the model for inference to avoid dire consequences of making wrong conclusions

from wrong models.  Researchers are advised to seek training on statistical methods,

include co-investigators with statistical background in their research teams and seek

statistical guidance at the conception stage of the project, so as to improve the quality
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of statistical inferences. Refresher courses on key statistical concepts may seem

warranted for investigators and to keep abreast with new analytical tools including

the widely available open source R software.
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